Prime zeta function statistics and Riemann zero-difference repulsion

نویسندگان

چکیده

We present a derivation of the numerical phenomenon that differences between Riemann zeta function's nontrivial zeros tend to avoid being equal imaginary parts themselves, property called statistical "repulsion" and their differences. Our relies on properties prime function, whose singularity structure specifies positions zeros. show function critical line is asymptotically normally distributed with covariance closely approximated by logarithm magnitude 1-line. This creates notable negative at separations approximately combine create conditional bias locations predicts zero-difference repulsion effect. method readily generalizes describe similar effects in related L-functions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Difference independence of the Riemann zeta function

It is proved that the Riemann zeta function does not satisfy any nontrivial algebraic difference equation whose coefficients are meromor-phic functions φ with Nevanlinna characteristic satisfying T (r, φ) = o(r) as r → ∞.

متن کامل

Riemann ’ s zeta function and the prime number theorem

16 Riemann’s zeta function and the prime number theorem We now divert our attention from algebraic number theory to talk about zeta functions and L-functions. As we shall see, every global field has a zeta function that is intimately related to the distribution of its primes. We begin with the zeta function of the rational field Q, which we will use to prove the prime number theorem. We will ne...

متن کامل

A Zero Density Result for the Riemann Zeta Function

N(σ, T ) ≤ 4.9(3T ) 8 3 (1−σ) log5−2σ(T ) + 51.5 log T, for σ ≥ 0.52 and T ≥ 2000. We discuss a generalization of the method used in these two results which yields an explicit bound of a similar shape while also improving the constants. Furthermore, we present the effect of these improvements on explicit estimates for the prime counting function ψ(x). This is joint work with Habiba Kadiri and N...

متن کامل

q-Riemann zeta function

We consider the modified q-analogue of Riemann zeta function which is defined by ζq(s)= ∑∞ n=1(qn(s−1)/[n]s), 0< q < 1, s ∈ C. In this paper, we give q-Bernoulli numbers which can be viewed as interpolation of the above q-analogue of Riemann zeta function at negative integers in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers. Also, we will treat some...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Mechanics: Theory and Experiment

سال: 2021

ISSN: ['1742-5468']

DOI: https://doi.org/10.1088/1742-5468/ac0ee0